Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Approximative Covariance Interpolation (1104.1880v1)

Published 11 Apr 2011 in math.OC and cs.SY

Abstract: When methods of moments are used for identification of power spectral densities, a model is matched to estimated second order statistics such as, e.g., covariance estimates. If the estimates are good there is an infinite family of power spectra consistent with such an estimate and in applications, such as identification, we want to single out the most representative spectrum. We choose a prior spectral density to represent a priori information, and the spectrum closest to it in a given quasi-distance is determined. However, if the estimates are based on few data, or the model class considered is not consistent with the process considered, it may be necessary to use an approximative covariance interpolation. Two different types of regularizations are considered in this paper that can be applied on many covariance interpolation based estimation methods.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)