Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Conditions for Linearity of Optimal Estimation (1104.1217v3)

Published 7 Apr 2011 in cs.IT and math.IT

Abstract: When is optimal estimation linear? It is well known that, when a Gaussian source is contaminated with Gaussian noise, a linear estimator minimizes the mean square estimation error. This paper analyzes, more generally, the conditions for linearity of optimal estimators. Given a noise (or source) distribution, and a specified signal to noise ratio (SNR), we derive conditions for existence and uniqueness of a source (or noise) distribution for which the $L_p$ optimal estimator is linear. We then show that, if the noise and source variances are equal, then the matching source must be distributed identically to the noise. Moreover, we prove that the Gaussian source-channel pair is unique in the sense that it is the only source-channel pair for which the mean square error (MSE) optimal estimator is linear at more than one SNR values. Further, we show the asymptotic linearity of MSE optimal estimators for low SNR if the channel is Gaussian regardless of the source and, vice versa, for high SNR if the source is Gaussian regardless of the channel. The extension to the vector case is also considered where besides the conditions inherited from the scalar case, additional constraints must be satisfied to ensure linearity of the optimal estimator.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube