Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Analysis of Block OMP using Block RIP (1104.1071v1)

Published 6 Apr 2011 in cs.IT and math.IT

Abstract: Orthogonal matching pursuit (OMP) is a canonical greedy algorithm for sparse signal reconstruction. When the signal of interest is block sparse, i.e., it has nonzero coefficients occurring in clusters, the block version of OMP algorithm (i.e., Block OMP) outperforms the conventional OMP. In this paper, we demonstrate that a new notion of block restricted isometry property (Block RIP), which is less stringent than standard restricted isometry property (RIP), can be used for a very straightforward analysis of Block OMP. It is demonstrated that Block OMP can exactly recover any block K-sparse signal in no more than K steps if the Block RIP of order K+1 with a sufficiently small isometry constant is satisfied. Using this result it can be proved that Block OMP can yield better reconstruction properties than the conventional OMP when the signal is block sparse.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.