Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Using a Non-Commutative Bernstein Bound to Approximate Some Matrix Algorithms in the Spectral Norm (1103.5453v1)

Published 28 Mar 2011 in cs.DS

Abstract: We focus on \emph{row sampling} based approximations for matrix algorithms, in particular matrix multipication, sparse matrix reconstruction, and \math{\ell_2} regression. For \math{\matA\in\R{m\times d}} (\math{m} points in \math{d\ll m} dimensions), and appropriate row-sampling probabilities, which typically depend on the norms of the rows of the \math{m\times d} left singular matrix of \math{\matA} (the \emph{leverage scores}), we give row-sampling algorithms with linear (up to polylog factors) dependence on the stable rank of \math{\matA}. This result is achieved through the application of non-commutative Bernstein bounds. Keywords: row-sampling; matrix multiplication; matrix reconstruction; estimating spectral norm; linear regression; randomized

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.