Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Certification of the Restricted Isometry Property (1103.4984v4)

Published 25 Mar 2011 in cs.CC and cs.DM

Abstract: Compressed sensing is a technique for finding sparse solutions to underdetermined linear systems. This technique relies on properties of the sensing matrix such as the restricted isometry property. Sensing matrices that satisfy the restricted isometry property with optimal parameters are mainly obtained via probabilistic arguments. Given any matrix, deciding whether it satisfies the restricted isometry property is a non-trivial computational problem. In this paper, we give reductions from dense subgraph problems to the certification of the restricted isometry property. This gives evidence that certifying the restricted isometry property is unlikely to be feasible in polynomial-time. Moreover, on the positive side we propose an improvement on the brute-force enumeration algorithm for checking the restricted isometry property. Another contribution of independent interest is a spectral algorithm for certifying that a random graph does not contain any dense k-subgraph. This "skewed spectral algorithm" performs better than the basic spectral algorithm in a certain range of parameters.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.