Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

The Discrete Infinite Logistic Normal Distribution (1103.4789v3)

Published 24 Mar 2011 in stat.ML

Abstract: We present the discrete infinite logistic normal distribution (DILN), a Bayesian nonparametric prior for mixed membership models. DILN is a generalization of the hierarchical Dirichlet process (HDP) that models correlation structure between the weights of the atoms at the group level. We derive a representation of DILN as a normalized collection of gamma-distributed random variables, and study its statistical properties. We consider applications to topic modeling and derive a variational inference algorithm for approximate posterior inference. We study the empirical performance of the DILN topic model on four corpora, comparing performance with the HDP and the correlated topic model (CTM). To deal with large-scale data sets, we also develop an online inference algorithm for DILN and compare with online HDP and online LDA on the Nature magazine, which contains approximately 350,000 articles.

Citations (85)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.