Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Formal and Computational Properties of the Confidence Boost of Association Rules (1103.4778v1)

Published 24 Mar 2011 in cs.DB and cs.AI

Abstract: Some existing notions of redundancy among association rules allow for a logical-style characterization and lead to irredundant bases of absolutely minimum size. One can push the intuition of redundancy further and find an intuitive notion of interest of an association rule, in terms of its "novelty" with respect to other rules. Namely: an irredundant rule is so because its confidence is higher than what the rest of the rules would suggest; then, one can ask: how much higher? We propose to measure such a sort of "novelty" through the confidence boost of a rule, which encompasses two previous similar notions (confidence width and rule blocking, of which the latter is closely related to the earlier measure "improvement"). Acting as a complement to confidence and support, the confidence boost helps to obtain small and crisp sets of mined association rules, and solves the well-known problem that, in certain cases, rules of negative correlation may pass the confidence bound. We analyze the properties of two versions of the notion of confidence boost, one of them a natural generalization of the other. We develop efficient algorithmics to filter rules according to their confidence boost, compare the concept to some similar notions in the bibliography, and describe the results of some experimentation employing the new notions on standard benchmark datasets. We describe an open-source association mining tool that embodies one of our variants of confidence boost in such a way that the data mining process does not require the user to select any value for any parameter.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)