Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The geometric stability of Voronoi diagrams with respect to small changes of the sites (1103.4125v2)

Published 21 Mar 2011 in cs.CG and math.FA

Abstract: Voronoi diagrams appear in many areas in science and technology and have numerous applications. They have been the subject of extensive investigation during the last decades. Roughly speaking, they are a certain decomposition of a given space into cells, induced by a distance function and by a tuple of subsets called the generators or the sites. Consider the following question: does a small change of the sites, e.g., of their position or shape, yield a small change in the corresponding Voronoi cells? This question is by all means natural and fundamental, since in practice one approximates the sites either because of inexact information about them, because of inevitable numerical errors in their representation, for simplification purposes and so on, and it is important to know whether the resulting Voronoi cells approximate the real ones well. The traditional approach to Voronoi diagrams, and, in particular, to (variants of) this question, is combinatorial. However, it seems that there has been a very limited discussion in the geometric sense (the shape of the cells), mainly an intuitive one, without proofs, in Euclidean spaces. We formalize this question precisely, and then show that the answer is positive in the case of Rd, or, more generally, in (possibly infinite dimensional) uniformly convex normed spaces, assuming there is a common positive lower bound on the distance between the sites. Explicit bounds are given, and we allow infinitely many sites of a general form. The relevance of this result is illustrated using several pictures and many real-world and theoretical examples and counterexamples.

Citations (51)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)