Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Survey of PPAD-Completeness for Computing Nash Equilibria (1103.2709v2)

Published 14 Mar 2011 in cs.GT and cs.CC

Abstract: PPAD refers to a class of computational problems for which solutions are guaranteed to exist due to a specific combinatorial principle. The most well-known such problem is that of computing a Nash equilibrium of a game. Other examples include the search for market equilibria, and envy-free allocations in the context of cake-cutting. A problem is said to be complete for PPAD if it belongs to PPAD and can be shown to constitute one of the hardest computational challenges within that class. In this paper, I give a relatively informal overview of the proofs used in the PPAD-completeness results. The focus is on the mixed Nash equilibria guaranteed to exist by Nash's theorem. I also give an overview of some recent work that uses these ideas to show PSPACE-completeness for the computation of specific equilibria found by homotopy methods. I give a brief introduction to related problems of searching for market equilibria.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.