Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Survey of PPAD-Completeness for Computing Nash Equilibria (1103.2709v2)

Published 14 Mar 2011 in cs.GT and cs.CC

Abstract: PPAD refers to a class of computational problems for which solutions are guaranteed to exist due to a specific combinatorial principle. The most well-known such problem is that of computing a Nash equilibrium of a game. Other examples include the search for market equilibria, and envy-free allocations in the context of cake-cutting. A problem is said to be complete for PPAD if it belongs to PPAD and can be shown to constitute one of the hardest computational challenges within that class. In this paper, I give a relatively informal overview of the proofs used in the PPAD-completeness results. The focus is on the mixed Nash equilibria guaranteed to exist by Nash's theorem. I also give an overview of some recent work that uses these ideas to show PSPACE-completeness for the computation of specific equilibria found by homotopy methods. I give a brief introduction to related problems of searching for market equilibria.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Paul W. Goldberg (37 papers)
Citations (20)

Summary

We haven't generated a summary for this paper yet.