Automatic Wrappers for Large Scale Web Extraction (1103.2406v1)
Abstract: We present a generic framework to make wrapper induction algorithms tolerant to noise in the training data. This enables us to learn wrappers in a completely unsupervised manner from automatically and cheaply obtained noisy training data, e.g., using dictionaries and regular expressions. By removing the site-level supervision that wrapper-based techniques require, we are able to perform information extraction at web-scale, with accuracy unattained with existing unsupervised extraction techniques. Our system is used in production at Yahoo! and powers live applications.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.