Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Feature Selection Method for Multivariate Performance Measures (1103.1013v2)

Published 5 Mar 2011 in cs.LG

Abstract: Feature selection with specific multivariate performance measures is the key to the success of many applications, such as image retrieval and text classification. The existing feature selection methods are usually designed for classification error. In this paper, we propose a generalized sparse regularizer. Based on the proposed regularizer, we present a unified feature selection framework for general loss functions. In particular, we study the novel feature selection paradigm by optimizing multivariate performance measures. The resultant formulation is a challenging problem for high-dimensional data. Hence, a two-layer cutting plane algorithm is proposed to solve this problem, and the convergence is presented. In addition, we adapt the proposed method to optimize multivariate measures for multiple instance learning problems. The analyses by comparing with the state-of-the-art feature selection methods show that the proposed method is superior to others. Extensive experiments on large-scale and high-dimensional real world datasets show that the proposed method outperforms $l_1$-SVM and SVM-RFE when choosing a small subset of features, and achieves significantly improved performances over SVM${perf}$ in terms of $F_1$-score.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Qi Mao (22 papers)
  2. Ivor W. Tsang (109 papers)
Citations (67)

Summary

We haven't generated a summary for this paper yet.