Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning transformed product distributions (1103.0598v1)

Published 3 Mar 2011 in cs.LG

Abstract: We consider the problem of learning an unknown product distribution $X$ over ${0,1}n$ using samples $f(X)$ where $f$ is a \emph{known} transformation function. Each choice of a transformation function $f$ specifies a learning problem in this framework. Information-theoretic arguments show that for every transformation function $f$ the corresponding learning problem can be solved to accuracy $\eps$, using $\tilde{O}(n/\eps2)$ examples, by a generic algorithm whose running time may be exponential in $n.$ We show that this learning problem can be computationally intractable even for constant $\eps$ and rather simple transformation functions. Moreover, the above sample complexity bound is nearly optimal for the general problem, as we give a simple explicit linear transformation function $f(x)=w \cdot x$ with integer weights $w_i \leq n$ and prove that the corresponding learning problem requires $\Omega(n)$ samples. As our main positive result we give a highly efficient algorithm for learning a sum of independent unknown Bernoulli random variables, corresponding to the transformation function $f(x)= \sum_{i=1}n x_i$. Our algorithm learns to $\eps$-accuracy in poly$(n)$ time, using a surprising poly$(1/\eps)$ number of samples that is independent of $n.$ We also give an efficient algorithm that uses $\log n \cdot \poly(1/\eps)$ samples but has running time that is only $\poly(\log n, 1/\eps).$

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Constantinos Daskalakis (111 papers)
  2. Ilias Diakonikolas (160 papers)
  3. Rocco A. Servedio (77 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.