Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Privacy Amplification and Non-Malleable Extractors Via Character Sums (1102.5415v6)

Published 26 Feb 2011 in cs.CR, cs.CC, and math.NT

Abstract: In studying how to communicate over a public channel with an active adversary, Dodis and Wichs introduced the notion of a non-malleable extractor. A non-malleable extractor dramatically strengthens the notion of a strong extractor. A strong extractor takes two inputs, a weakly-random x and a uniformly random seed y, and outputs a string which appears uniform, even given y. For a non-malleable extractor nmExt, the output nmExt(x,y) should appear uniform given y as well as nmExt(x,A(y)), where A is an arbitrary function with A(y) not equal to y. We show that an extractor introduced by Chor and Goldreich is non-malleable when the entropy rate is above half. It outputs a linear number of bits when the entropy rate is 1/2 + alpha, for any alpha>0. Previously, no nontrivial parameters were known for any non-malleable extractor. To achieve a polynomial running time when outputting many bits, we rely on a widely-believed conjecture about the distribution of prime numbers in arithmetic progressions. Our analysis involves a character sum estimate, which may be of independent interest. Using our non-malleable extractor, we obtain protocols for "privacy amplification": key agreement between two parties who share a weakly-random secret. Our protocols work in the presence of an active adversary with unlimited computational power, and have asymptotically optimal entropy loss. When the secret has entropy rate greater than 1/2, the protocol follows from a result of Dodis and Wichs, and takes two rounds. When the secret has entropy rate delta for any constant delta>0, our new protocol takes a constant (polynomial in 1/delta) number of rounds. Our protocols run in polynomial time under the above well-known conjecture about primes.

Citations (68)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.