Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regular Ideal Languages and Their Boolean Combinations (1102.5013v3)

Published 24 Feb 2011 in cs.FL

Abstract: We consider ideals and Boolean combinations of ideals. For the regular languages within these classes we give expressively complete automaton models. In addition, we consider general properties of regular ideals and their Boolean combinations. These properties include effective algebraic characterizations and lattice identities. In the main part of this paper we consider the following deterministic one-way automaton models: unions of flip automata, weak automata, and Staiger-Wagner automata. We show that each of these models is expressively complete for regular Boolean combination of right ideals. Right ideals over finite words resemble the open sets in the Cantor topology over infinite words. An omega-regular language is a Boolean combination of open sets if and only if it is recognizable by a deterministic Staiger-Wagner automaton; and our result can be seen as a finitary version of this classical theorem. In addition, we also consider the canonical automaton models for right ideals, prefix-closed languages, and factorial languages. In the last section, we consider a two-way automaton model which is known to be expressively complete for two-variable first-order logic. We show that the above concepts can be adapted to these two-way automata such that the resulting languages are the right ideals (resp. prefix-closed languages, resp. Boolean combinations of right ideals) definable in two-variable first-order logic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.