Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 42 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reverse Engineering of Molecular Networks from a Common Combinatorial Approach (1102.4904v1)

Published 24 Feb 2011 in q-bio.MN, cs.CE, and q-bio.QM

Abstract: The understanding of molecular cell biology requires insight into the structure and dynamics of networks that are made up of thousands of interacting molecules of DNA, RNA, proteins, metabolites, and other components. One of the central goals of systems biology is the unraveling of the as yet poorly characterized complex web of interactions among these components. This work is made harder by the fact that new species and interactions are continuously discovered in experimental work, necessitating the development of adaptive and fast algorithms for network construction and updating. Thus, the "reverse-engineering" of networks from data has emerged as one of the central concern of systems biology research. A variety of reverse-engineering methods have been developed, based on tools from statistics, machine learning, and other mathematical domains. In order to effectively use these methods, it is essential to develop an understanding of the fundamental characteristics of these algorithms. With that in mind, this chapter is dedicated to the reverse-engineering of biological systems. Specifically, we focus our attention on a particular class of methods for reverse-engineering, namely those that rely algorithmically upon the so-called "hitting-set" problem, which is a classical combinatorial and computer science problem, Each of these methods utilizes a different algorithm in order to obtain an exact or an approximate solution of the hitting set problem. We will explore the ultimate impact that the alternative algorithms have on the inference of published in silico biological networks.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.