Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Non-Conservative Diffusion and its Application to Social Network Analysis (1102.4639v3)

Published 22 Feb 2011 in cs.SI, physics.data-an, and physics.soc-ph

Abstract: The random walk is fundamental to modeling dynamic processes on networks. Metrics based on the random walk have been used in many applications from image processing to Web page ranking. However, how appropriate are random walks to modeling and analyzing social networks? We argue that unlike a random walk, which conserves the quantity diffusing on a network, many interesting social phenomena, such as the spread of information or disease on a social network, are fundamentally non-conservative. When an individual infects her neighbor with a virus, the total amount of infection increases. We classify diffusion processes as conservative and non-conservative and show how these differences impact the choice of metrics used for network analysis, as well as our understanding of network structure and behavior. We show that Alpha-Centrality, which mathematically describes non-conservative diffusion, leads to new insights into the behavior of spreading processes on networks. We give a scalable approximate algorithm for computing the Alpha-Centrality in a massive graph. We validate our approach on real-world online social networks of Digg. We show that a non-conservative metric, such as Alpha-Centrality, produces better agreement with empirical measure of influence than conservative metrics, such as PageRank. We hope that our investigation will inspire further exploration into the realms of conservative and non-conservative metrics in social network analysis.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.