Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Subspace Expanders and Matrix Rank Minimization (1102.3947v1)

Published 19 Feb 2011 in cs.IT and math.IT

Abstract: Matrix rank minimization (RM) problems recently gained extensive attention due to numerous applications in machine learning, system identification and graphical models. In RM problem, one aims to find the matrix with the lowest rank that satisfies a set of linear constraints. The existing algorithms include nuclear norm minimization (NNM) and singular value thresholding. Thus far, most of the attention has been on i.i.d. Gaussian measurement operators. In this work, we introduce a new class of measurement operators, and a novel recovery algorithm, which is notably faster than NNM. The proposed operators are based on what we refer to as subspace expanders, which are inspired by the well known expander graphs based measurement matrices in compressed sensing. We show that given an $n\times n$ PSD matrix of rank $r$, it can be uniquely recovered from a minimal sampling of $O(nr)$ measurements using the proposed structures, and the recovery algorithm can be cast as matrix inversion after a few initial processing steps.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.