Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Compressive MUSIC with optimized partial support for joint sparse recovery (1102.3288v2)

Published 16 Feb 2011 in cs.IT and math.IT

Abstract: Multiple measurement vector (MMV) problem addresses the identification of unknown input vectors that share common sparse support. The MMV problems had been traditionally addressed either by sensor array signal processing or compressive sensing. However, recent breakthrough in this area such as compressive MUSIC (CS-MUSIC) or subspace-augumented MUSIC (SA-MUSIC) optimally combines the compressive sensing (CS) and array signal processing such that $k-r$ supports are first found by CS and the remaining $r$ supports are determined by generalized MUSIC criterion, where $k$ and $r$ denote the sparsity and the independent snapshots, respectively. Even though such hybrid approach significantly outperforms the conventional algorithms, its performance heavily depends on the correct identification of $k-r$ partial support by compressive sensing step, which often deteriorate the overall performance. The main contribution of this paper is, therefore, to show that as long as $k-r+1$ correct supports are included in any $k$-sparse CS solution, the optimal $k-r$ partial support can be found using a subspace fitting criterion, significantly improving the overall performance of CS-MUSIC. Furthermore, unlike the single measurement CS counterpart that requires infinite SNR for a perfect support recovery, we can derive an information theoretic sufficient condition for the perfect recovery using CS-MUSIC under a {\em finite} SNR scenario.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.