Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite-Memory Prediction as Well as the Empirical Mean (1102.2836v4)

Published 14 Feb 2011 in cs.IT and math.IT

Abstract: The problem of universally predicting an individual continuous sequence using a deterministic finite-state machine (FSM) is considered. The empirical mean is used as a reference as it is the constant that fits a given sequence within a minimal square error. With this reference, a reasonable prediction performance is the regret, namely the excess square-error over the reference loss, the empirical variance. The paper analyzes the tradeoff between the number of states of the universal FSM and the attainable regret. It first studies the case of a small number of states. A class of machines, denoted Degenerated Tracking Memory (DTM), is defined and the optimal machine in this class is shown to be the optimal among all machines for small enough number of states. Unfortunately, DTM machines become suboptimal as the number of available states increases. Next, the Exponential Decaying Memory (EDM) machine, previously used for predicting binary sequences, is considered. While this machine has poorer performance for small number of states, it achieves a vanishing regret for large number of states. Following that, an asymptotic lower bound of O(k{-2/3}) on the achievable regret of any k-state machine is derived. This bound is attained asymptotically by the EDM machine. Furthermore, a new machine, denoted the Enhanced Exponential Decaying Memory machine, is shown to outperform the EDM machine for any number of states.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.