Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Type Classes for Mathematics in Type Theory (1102.1323v1)

Published 7 Feb 2011 in cs.LO

Abstract: The introduction of first-class type classes in the Coq system calls for re-examination of the basic interfaces used for mathematical formalization in type theory. We present a new set of type classes for mathematics and take full advantage of their unique features to make practical a particularly flexible approach formerly thought infeasible. Thus, we address both traditional proof engineering challenges as well as new ones resulting from our ambition to build upon this development a library of constructive analysis in which abstraction penalties inhibiting efficient computation are reduced to a minimum. The base of our development consists of type classes representing a standard algebraic hierarchy, as well as portions of category theory and universal algebra. On this foundation we build a set of mathematically sound abstract interfaces for different kinds of numbers, succinctly expressed using categorical language and universal algebra constructions. Strategic use of type classes lets us support these high-level theory-friendly definitions while still enabling efficient implementations unhindered by gratuitous indirection, conversion or projection. Algebra thrives on the interplay between syntax and semantics. The Prolog-like abilities of type class instance resolution allow us to conveniently define a quote function, thus facilitating the use of reflective techniques.

Citations (106)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.