Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hidden Tree Structure is a Key to the Emergence of Scaling in the World Wide Web (1101.5972v1)

Published 31 Jan 2011 in cs.SI and physics.soc-ph

Abstract: Preferential attachment is the most popular explanation for the emergence of scaling behavior in the World Wide Web, but this explanation has been challenged by the global information hypothesis, the existence of linear preference and the emergence of new big internet companies in the real world. We notice that most websites have an obvious feature that their pages are organized as a tree (namely hidden tree) and hence propose a new model that introduces a hidden tree structure into the Erd\H{o}s-R\'e}yi model by adding a new rule: when one node connects to another, it should also connect to all nodes in the path between these two nodes in the hidden tree. The experimental results show that the degree distribution of the generated graphs would obey power law distributions and have variable high clustering coefficients and variable small average lengths of shortest paths. The proposed model provides an alternative explanation to the emergence of scaling in the World Wide Web without the above-mentioned difficulties, and also explains the "preferential attachment" phenomenon.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.