Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 46 tok/s Pro
Gemini 2.5 Flash 148 tok/s Pro
Kimi K2 170 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Recursive $\ell_{1,\infty}$ Group lasso (1101.5734v1)

Published 29 Jan 2011 in stat.ME and stat.ML

Abstract: We introduce a recursive adaptive group lasso algorithm for real-time penalized least squares prediction that produces a time sequence of optimal sparse predictor coefficient vectors. At each time index the proposed algorithm computes an exact update of the optimal $\ell_{1,\infty}$-penalized recursive least squares (RLS) predictor. Each update minimizes a convex but nondifferentiable function optimization problem. We develop an online homotopy method to reduce the computational complexity. Numerical simulations demonstrate that the proposed algorithm outperforms the $\ell_1$ regularized RLS algorithm for a group sparse system identification problem and has lower implementation complexity than direct group lasso solvers.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.