Papers
Topics
Authors
Recent
2000 character limit reached

Bayesian Network Structure Learning with Permutation Tests (1101.5184v3)

Published 27 Jan 2011 in stat.ML and stat.ME

Abstract: In literature there are several studies on the performance of Bayesian network structure learning algorithms. The focus of these studies is almost always the heuristics the learning algorithms are based on, i.e. the maximisation algorithms (in score-based algorithms) or the techniques for learning the dependencies of each variable (in constraint-based algorithms). In this paper we investigate how the use of permutation tests instead of parametric ones affects the performance of Bayesian network structure learning from discrete data. Shrinkage tests are also covered to provide a broad overview of the techniques developed in current literature.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.