Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Parameter Optimization of Multi-Agent Formations based on LQR Design (1101.4431v1)

Published 24 Jan 2011 in cs.SY and cs.MA

Abstract: In this paper we study the optimal formation control of multiple agents whose interaction parameters are adjusted upon a cost function consisting of both the control energy and the geometrical performance. By optimizing the interaction parameters and by the linear quadratic regulation(LQR) controllers, the upper bound of the cost function is minimized. For systems with homogeneous agents interconnected over sparse graphs, distributed controllers are proposed that inherit the same underlying graph as the one among agents. For the more general case, a relaxed optimization problem is considered so as to eliminate the nonlinear constraints. Using the subgradient method, interaction parameters among agents are optimized under the constraint of a sparse graph, and the optimum of the cost function is a better result than the one when agents interacted only through the control channel. Numerical examples are provided to validate the effectiveness of the method and to illustrate the geometrical performance of the system.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)