Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Maximizing Non-monotone Submodular Set Functions Subject to Different Constraints: Combined Algorithms (1101.2973v5)

Published 15 Jan 2011 in cs.DS

Abstract: We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-knapsack constraints we achieve a $(0.25-2\epsilon)$-factor algorithm. We also show, as our main contribution, how to use the continuous greedy process for non-monotone functions and, as a result, obtain a $0.13$-factor approximation algorithm for maximization over any solvable down-monotone polytope. The continuous greedy process has been previously used for maximizing smooth monotone submodular function over a down-monotone polytope \cite{CCPV08}. This implies a 0.13-approximation for several discrete problems, such as maximizing a non-negative submodular function subject to a matroid constraint and/or multiple knapsack constraints.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.