Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 362 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Maximizing Non-monotone Submodular Set Functions Subject to Different Constraints: Combined Algorithms (1101.2973v5)

Published 15 Jan 2011 in cs.DS

Abstract: We study the problem of maximizing constrained non-monotone submodular functions and provide approximation algorithms that improve existing algorithms in terms of either the approximation factor or simplicity. Our algorithms combine existing local search and greedy based algorithms. Different constraints that we study are exact cardinality and multiple knapsack constraints. For the multiple-knapsack constraints we achieve a $(0.25-2\epsilon)$-factor algorithm. We also show, as our main contribution, how to use the continuous greedy process for non-monotone functions and, as a result, obtain a $0.13$-factor approximation algorithm for maximization over any solvable down-monotone polytope. The continuous greedy process has been previously used for maximizing smooth monotone submodular function over a down-monotone polytope \cite{CCPV08}. This implies a 0.13-approximation for several discrete problems, such as maximizing a non-negative submodular function subject to a matroid constraint and/or multiple knapsack constraints.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.