Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

On Quadratic Programming with a Ratio Objective (1101.1710v2)

Published 10 Jan 2011 in cs.CC and cs.DS

Abstract: Quadratic Programming (QP) is the well-studied problem of maximizing over {-1,1} values the quadratic form \sum_{i \ne j} a_{ij} x_i x_j. QP captures many known combinatorial optimization problems, and assuming the unique games conjecture, semidefinite programming techniques give optimal approximation algorithms. We extend this body of work by initiating the study of Quadratic Programming problems where the variables take values in the domain {-1,0,1}. The specific problems we study are QP-Ratio : \max_{{-1,0,1}n} \frac{\sum_{i \not = j} a_{ij} x_i x_j}{\sum x_i2}, and Normalized QP-Ratio : \max_{{-1,0,1}n} \frac{\sum_{i \not = j} a_{ij} x_i x_j}{\sum d_i x_i2}, where d_i = \sum_j |a_{ij}| We consider an SDP relaxation obtained by adding constraints to the natural eigenvalue (or SDP) relaxation for this problem. Using this, we obtain an $\tilde{O}(n{1/3})$ algorithm for QP-ratio. We also obtain an $\tilde{O}(n{1/4})$ approximation for bipartite graphs, and better algorithms for special cases. As with other problems with ratio objectives (e.g. uniform sparsest cut), it seems difficult to obtain inapproximability results based on P!=NP. We give two results that indicate that QP-Ratio is hard to approximate to within any constant factor. We also give a natural distribution on instances of QP-Ratio for which an n\epsilon approximation (for \epsilon roughly 1/10) seems out of reach of current techniques.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube