Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bounds on the Capacity of Random Insertion and Deletion-Additive Noise Channels (1101.1310v4)

Published 6 Jan 2011 in cs.IT and math.IT

Abstract: We develop several analytical lower bounds on the capacity of binary insertion and deletion channels by considering independent uniformly distributed (i.u.d.) inputs and computing lower bounds on the mutual information between the input and output sequences. For the deletion channel, we consider two different models: independent and identically distributed (i.i.d.) deletion-substitution channel and i.i.d. deletion channel with additive white Gaussian noise (AWGN). These two models are considered to incorporate effects of the channel noise along with the synchronization errors. For the insertion channel case we consider the Gallager's model in which the transmitted bits are replaced with two random bits and uniform over the four possibilities independently of any other insertion events. The general approach taken is similar in all cases, however the specific computations differ. Furthermore, the approach yields a useful lower bound on the capacity for a wide range of deletion probabilities for the deletion channels, while it provides a beneficial bound only for small insertion probabilities (less than 0.25) for the insertion model adopted. We emphasize the importance of these results by noting that 1) our results are the first analytical bounds on the capacity of deletion-AWGN channels, 2) the results developed are the best available analytical lower bounds on the deletion-substitution case, 3) for the Gallager insertion channel model, the new lower bound improves the existing results for small insertion probabilities.

Citations (29)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube