Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Coloring Planar Homothets and Three-Dimensional Hypergraphs (1101.0565v8)

Published 3 Jan 2011 in cs.CG

Abstract: The inclusion relation between simple objects in the plane may be used to define geometric set systems, or hypergraphs. Properties of various types of colorings of these hypergraphs have been the subject of recent investigations, with applications to wireless networking. We first prove that every set of homothetic copies of a given convex body in the plane can be colored with four colors so that any point covered by at least two copies is covered by two copies with distinct colors. This generalizes a previous result from Smorodinsky [18]. As a corollary, we find improvements to well studied variations of the coloring problem such as conflict-free colorings, k-strong (conflict-free) colorings and choosability. We also show a relation between our proof and Schnyder's characterization of planar graphs. Then we show that for any k >1, every three-dimensional hypergraph can be colored with 6(k - 1) colors so that every hyperedge e contains min{|e|, k} vertices with mutually distinct colors. Furthermore, we also show that at least 2k colors might be necessary. This refines a previous result from Aloupis et al. [2].

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.