Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Near approximation of maximum weight matching through efficient weight reduction (1012.5911v2)

Published 29 Dec 2010 in cs.DS

Abstract: Let G be an edge-weighted hypergraph on n vertices, m edges of size \le s, where the edges have real weights in an interval [1,W]. We show that if we can approximate a maximum weight matching in G within factor alpha in time T(n,m,W) then we can find a matching of weight at least (alpha-epsilon) times the maximum weight of a matching in G in time (epsilon{-1}){O(1)}max_{1\le q \le O(epsilon \frac {log {\frac n {epsilon}}} {log epsilon{-1}})} max_{m_1+...m_q=m} sum_1qT(min{n,sm_j},m_{j},(epsilon{-1}){O(epsilon{-1})}). In particular, if we combine our result with the recent (1-\epsilon)-approximation algorithm for maximum weight matching in graphs due to Duan and Pettie whose time complexity has a poly-logarithmic dependence on W then we obtain a (1-\epsilon)-approximation algorithm for maximum weight matching in graphs running in time (epsilon{-1}){O(1)}(m+n).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)