Papers
Topics
Authors
Recent
2000 character limit reached

Non-negative Weighted #CSPs: An Effective Complexity Dichotomy (1012.5659v1)

Published 27 Dec 2010 in cs.CC

Abstract: We prove a complexity dichotomy theorem for all non-negative weighted counting Constraint Satisfaction Problems (CSP). This caps a long series of important results on counting problems including unweighted and weighted graph homomorphisms and the celebrated dichotomy theorem for unweighted #CSP. Our dichotomy theorem gives a succinct criterion for tractability. If a set F of constraint functions satisfies the criterion, then the counting CSP problem defined by F is solvable in polynomial time; if it does not satisfy the criterion, then the problem is #P-hard. We furthermore show that the question of whether F satisfies the criterion is decidable in NP. Surprisingly, our tractability criterion is simpler than the previous criteria for the more restricted classes of problems, although when specialized to those cases, they are logically equivalent. Our proof mainly uses Linear Algebra, and represents a departure from Universal Algebra, the dominant methodology in recent years.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.