Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Mining Multi-Level Frequent Itemsets under Constraints (1012.5546v1)

Published 26 Dec 2010 in cs.DB, cs.AI, and cs.DS

Abstract: Mining association rules is a task of data mining, which extracts knowledge in the form of significant implication relation of useful items (objects) from a database. Mining multilevel association rules uses concept hierarchies, also called taxonomies and defined as relations of type 'is-a' between objects, to extract rules that items belong to different levels of abstraction. These rules are more useful, more refined and more interpretable by the user. Several algorithms have been proposed in the literature to discover the multilevel association rules. In this article, we are interested in the problem of discovering multi-level frequent itemsets under constraints, involving the user in the research process. We proposed a technique for modeling and interpretation of constraints in a context of use of concept hierarchies. Three approaches for discovering multi-level frequent itemsets under constraints were proposed and discussed: Basic approach, "Test and Generate" approach and Pruning based Approach.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.