Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Distributed Detection over Random Networks: Large Deviations Performance Analysis (1012.4668v1)

Published 21 Dec 2010 in cs.IT and math.IT

Abstract: We study the large deviations performance, i.e., the exponential decay rate of the error probability, of distributed detection algorithms over random networks. At each time step $k$ each sensor: 1) averages its decision variable with the neighbors' decision variables; and 2) accounts on-the-fly for its new observation. We show that distributed detection exhibits a "phase change" behavior. When the rate of network information flow (the speed of averaging) is above a threshold, then distributed detection is asymptotically equivalent to the optimal centralized detection, i.e., the exponential decay rate of the error probability for distributed detection equals the Chernoff information. When the rate of information flow is below a threshold, distributed detection achieves only a fraction of the Chernoff information rate; we quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of distributed detection over random networks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.