Papers
Topics
Authors
Recent
2000 character limit reached

Distributed Detection over Random Networks: Large Deviations Performance Analysis (1012.4668v1)

Published 21 Dec 2010 in cs.IT and math.IT

Abstract: We study the large deviations performance, i.e., the exponential decay rate of the error probability, of distributed detection algorithms over random networks. At each time step $k$ each sensor: 1) averages its decision variable with the neighbors' decision variables; and 2) accounts on-the-fly for its new observation. We show that distributed detection exhibits a "phase change" behavior. When the rate of network information flow (the speed of averaging) is above a threshold, then distributed detection is asymptotically equivalent to the optimal centralized detection, i.e., the exponential decay rate of the error probability for distributed detection equals the Chernoff information. When the rate of information flow is below a threshold, distributed detection achieves only a fraction of the Chernoff information rate; we quantify this achievable rate as a function of the network rate of information flow. Simulation examples demonstrate our theoretical findings on the behavior of distributed detection over random networks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.