Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Differential Privacy versus Quantitative Information Flow (1012.4250v1)

Published 20 Dec 2010 in cs.IT, cs.CR, cs.DB, and math.IT

Abstract: Differential privacy is a notion of privacy that has become very popular in the database community. Roughly, the idea is that a randomized query mechanism provides sufficient privacy protection if the ratio between the probabilities of two different entries to originate a certain answer is bound by e\epsilon. In the fields of anonymity and information flow there is a similar concern for controlling information leakage, i.e. limiting the possibility of inferring the secret information from the observables. In recent years, researchers have proposed to quantify the leakage in terms of the information-theoretic notion of mutual information. There are two main approaches that fall in this category: One based on Shannon entropy, and one based on R\'enyi's min entropy. The latter has connection with the so-called Bayes risk, which expresses the probability of guessing the secret. In this paper, we show how to model the query system in terms of an information-theoretic channel, and we compare the notion of differential privacy with that of mutual information. We show that the notion of differential privacy is strictly stronger, in the sense that it implies a bound on the mutual information, but not viceversa.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube