Stochastic Vector Quantisers (1012.3705v1)
Abstract: In this paper a stochastic generalisation of the standard Linde-Buzo-Gray (LBG) approach to vector quantiser (VQ) design is presented, in which the encoder is implemented as the sampling of a vector of code indices from a probability distribution derived from the input vector, and the decoder is implemented as a superposition of reconstruction vectors, and the stochastic VQ is optimised using a minimum mean Euclidean reconstruction distortion criterion, as in the LBG case. Numerical simulations are used to demonstrate how this leads to self-organisation of the stochastic VQ, where different stochastically sampled code indices become associated with different input subspaces. This property may be used to automate the process of splitting high-dimensional input vectors into low-dimensional blocks before encoding them.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.