Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accurate prediction of gene expression by integration of DNA sequence statistics with detailed modeling of transcription regulation (1012.3607v1)

Published 16 Dec 2010 in q-bio.MN, cond-mat.stat-mech, cs.CE, physics.bio-ph, and q-bio.SC

Abstract: Gene regulation involves a hierarchy of events that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. The effects of DNA sequence on these processes have typically been studied based either on its quantitative connection with single-domain binding free energies or on empirical rules that combine different DNA motifs to predict gene expression trends on a genomic scale. The middle-point approach that quantitatively bridges these two extremes, however, remains largely unexplored. Here, we provide an integrated approach to accurately predict gene expression from statistical sequence information in combination with detailed biophysical modeling of transcription regulation by multidomain binding on multiple DNA sites. For the regulation of the prototypical lac operon, this approach predicts within 0.3-fold accuracy transcriptional activity over a 10,000-fold range from DNA sequence statistics for different intracellular conditions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)