Contracting planar graphs to contractions of triangulations (1012.2460v1)
Abstract: For every graph $H$, there exists a polynomial-time algorithm deciding if a planar input graph $G$ can be contracted to~$H$. However, the degree of the polynomial depends on the size of $H$. In this paper, we identify a class of graphs $\cal C$ such that for every $H \in \cal C$, there exists an algorithm deciding in time $f(|V(H)|) \cdot |V(G)|{\bigO{1}}$ whether a planar graph $G$ can be contracted to~$H$. (The function $f(\cdot)$ does not depend on $G$.) The class $\cal C$ is the closure of planar triangulated graphs under taking of contractions. In fact, we prove that a graph $H \in \cal C$ if and only if there exists a constant $c_H$ such that if the tree-width of a graph is at least $c_H$, it contains $H$ as a contraction. We also provide a characterization of $\cal C$ in terms of minimal forbidden contractions.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.