Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

NE is not NP Turing Reducible to Nonexpoentially Dense NP Sets (1012.2394v1)

Published 10 Dec 2010 in cs.CC

Abstract: A long standing open problem in the computational complexity theory is to separate NE from BPP, which is a subclass of $NP_T(NP\cap P/poly)$. In this paper, we show that $NE\not\subseteq NP_(NP \cap$ Nonexponentially-Dense-Class), where Nonexponentially-Dense-Class is the class of languages A without exponential density (for each constant c>0,$|A{\le n}|\le 2{nc}$ for infinitely many integers n). Our result implies $NE\not\subseteq NP_T({pad(NP, g(n))})$ for every time constructible super-polynomial function g(n) such as $g(n)=n{\ceiling{\log\ceiling{\log n}}}$, where Pad(NP, g(n)) is class of all languages $L_B={s10{g(|s|)-|s|-1}:s\in B}$ for $B\in NP$. We also show $NE\not\subseteq NP_T(P_{tt}(NP)\cap Tally)$.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)