Papers
Topics
Authors
Recent
2000 character limit reached

The Graph Isomorphism Problem and approximate categories (1012.2081v1)

Published 9 Dec 2010 in math.CO, cs.CC, math.AC, and math.RA

Abstract: It is unknown whether two graphs can be tested for isomorphism in polynomial time. A classical approach to the Graph Isomorphism Problem is the d-dimensional Weisfeiler-Lehman algorithm. The d-dimensional WL-algorithm can distinguish many pairs of graphs, but the pairs of non-isomorphic graphs constructed by Cai, Furer and Immerman it cannot distinguish. If d is fixed, then the WL-algorithm runs in polynomial time. We will formulate the Graph Isomorphism Problem as an Orbit Problem: Given a representation V of an algebraic group G and two elements v_1,v_2 in V, decide whether v_1 and v_2 lie in the same G-orbit. Then we attack the Orbit Problem by constructing certain approximate categories C_d(V), d=1,2,3,... whose objects include the elements of V. We show that v_1 and v_2 are not in the same orbit by showing that they are not isomorphic in the category C_d(V) for some d. For every d this gives us an algorithm for isomorphism testing. We will show that the WL-algorithms reduce to our algorithms, but that our algorithms cannot be reduced to the WL-algorithms. Unlike the Weisfeiler-Lehman algorithm, our algorithm can distinguish the Cai-Furer-Immerman graphs in polynomial time.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.