Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

On Rainbow-$k$-Connectivity of Random Graphs (1012.1942v2)

Published 9 Dec 2010 in math.CO and cs.DM

Abstract: A path in an edge-colored graph is called a \emph{rainbow path} if all edges on it have pairwise distinct colors. For $k\geq 1$, the \emph{rainbow-$k$-connectivity} of a graph $G$, denoted $rc_k(G)$, is the minimum number of colors required to color the edges of $G$ in such a way that every two distinct vertices are connected by at least $k$ internally disjoint rainbow paths. In this paper, we study rainbow-$k$-connectivity in the setting of random graphs. We show that for every fixed integer $d\geq 2$ and every $k\leq O(\log n)$, $p=\frac{(\log n){1/d}}{n{(d-1)/d}}$ is a sharp threshold function for the property $rc_k(G(n,p))\leq d$. This substantially generalizes a result due to Caro et al., stating that $p=\sqrt{\frac{\log n}{n}}$ is a sharp threshold function for the property $rc_1(G(n,p))\leq 2$. As a by-product, we obtain a polynomial-time algorithm that makes $G(n,p)$ rainbow-$k$-connected using at most one more than the optimal number of colors with probability $1-o(1)$, for all $k\leq O(\log n)$ and $p=n{-\epsilon(1\pm o(1))}$ for some constant $\epsilon\in[0,1)$.

Citations (37)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.