Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Concept Annotation System for Clinical Records (1012.1663v1)

Published 8 Dec 2010 in cs.IR

Abstract: Unstructured information comprises a valuable source of data in clinical records. For text mining in clinical records, concept extraction is the first step in finding assertions and relationships. This study presents a system developed for the annotation of medical concepts, including medical problems, tests, and treatments, mentioned in clinical records. The system combines six publicly available named entity recognition system into one framework, and uses a simple voting scheme that allows to tune precision and recall of the system to specific needs. The system provides both a web service interface and a UIMA interface which can be easily used by other systems. The system was tested in the fourth i2b2 challenge and achieved an F-score of 82.1% for the concept exact match task, a score which is among the top-ranking systems. To our knowledge, this is the first publicly available clinical record concept annotation system.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.