Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

A Block Lanczos with Warm Start Technique for Accelerating Nuclear Norm Minimization Algorithms (1012.0365v2)

Published 2 Dec 2010 in cs.NA, cs.AI, and math.OC

Abstract: Recent years have witnessed the popularity of using rank minimization as a regularizer for various signal processing and machine learning problems. As rank minimization problems are often converted to nuclear norm minimization (NNM) problems, they have to be solved iteratively and each iteration requires computing a singular value decomposition (SVD). Therefore, their solution suffers from the high computation cost of multiple SVDs. To relieve this issue, we propose using the block Lanczos method to compute the partial SVDs, where the principal singular subspaces obtained in the previous iteration are used to start the block Lanczos procedure. To avoid the expensive reorthogonalization in the Lanczos procedure, the block Lanczos procedure is performed for only a few steps. Our block Lanczos with warm start (BLWS) technique can be adopted by different algorithms that solve NNM problems. We present numerical results on applying BLWS to Robust PCA and Matrix Completion problems. Experimental results show that our BLWS technique usually accelerates its host algorithm by at least two to three times.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube