Papers
Topics
Authors
Recent
2000 character limit reached

Learning restricted Bayesian network structures (1011.6664v1)

Published 30 Nov 2010 in math.OC, cs.DS, cs.IT, and math.IT

Abstract: Bayesian networks are basic graphical models, used widely both in statistics and artificial intelligence. These statistical models of conditional independence structure are described by acyclic directed graphs whose nodes correspond to (random) variables in consideration. A quite important topic is the learning of Bayesian network structures, which is determining the best fitting statistical model on the basis of given data. Although there are learning methods based on statistical conditional independence tests, contemporary methods are mainly based on maximization of a suitable quality criterion that evaluates how good the graph explains the occurrence of the observed data. This leads to a nonlinear combinatorial optimization problem that is in general NP-hard to solve. In this paper we deal with the complexity of learning restricted Bayesian network structures, that is, we wish to find network structures of highest score within a given subset of all possible network structures. For this, we introduce a new unique algebraic representative for these structures, called the characteristic imset. We show that these imsets are always 0-1-vectors and that they have many nice properties that allow us to simplify long proofs for some known results and to easily establish new complexity results for learning restricted Bayes network structures.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.