Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Reinforcement Learning in Partially Observable Markov Decision Processes using Hybrid Probabilistic Logic Programs (1011.5951v1)

Published 27 Nov 2010 in cs.AI

Abstract: We present a probabilistic logic programming framework to reinforcement learning, by integrating reinforce-ment learning, in POMDP environments, with normal hybrid probabilistic logic programs with probabilistic answer set seman-tics, that is capable of representing domain-specific knowledge. We formally prove the correctness of our approach. We show that the complexity of finding a policy for a reinforcement learning problem in our approach is NP-complete. In addition, we show that any reinforcement learning problem can be encoded as a classical logic program with answer set semantics. We also show that a reinforcement learning problem can be encoded as a SAT problem. We present a new high level action description language that allows the factored representation of POMDP. Moreover, we modify the original model of POMDP so that it be able to distinguish between knowledge producing actions and actions that change the environment.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)