Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact Distance Oracles for Planar Graphs (1011.5549v4)

Published 25 Nov 2010 in cs.DS and cs.DM

Abstract: We present new and improved data structures that answer exact node-to-node distance queries in planar graphs. Such data structures are also known as distance oracles. For any directed planar graph on n nodes with non-negative lengths we obtain the following: * Given a desired space allocation $S\in[n\lg\lg n,n2]$, we show how to construct in $\tilde O(S)$ time a data structure of size $O(S)$ that answers distance queries in $\tilde O(n/\sqrt S)$ time per query. As a consequence, we obtain an improvement over the fastest algorithm for k-many distances in planar graphs whenever $k\in[\sqrt n,n)$. * We provide a linear-space exact distance oracle for planar graphs with query time $O(n{1/2+eps})$ for any constant eps>0. This is the first such data structure with provable sublinear query time. * For edge lengths at least one, we provide an exact distance oracle of space $\tilde O(n)$ such that for any pair of nodes at distance D the query time is $\tilde O(min {D,\sqrt n})$. Comparable query performance had been observed experimentally but has never been explained theoretically. Our data structures are based on the following new tool: given a non-self-crossing cycle C with $c = O(\sqrt n)$ nodes, we can preprocess G in $\tilde O(n)$ time to produce a data structure of size $O(n \lg\lg c)$ that can answer the following queries in $\tilde O(c)$ time: for a query node u, output the distance from u to all the nodes of C. This data structure builds on and extends a related data structure of Klein (SODA'05), which reports distances to the boundary of a face, rather than a cycle. The best distance oracles for planar graphs until the current work are due to Cabello (SODA'06), Djidjev (WG'96), and Fakcharoenphol and Rao (FOCS'01). For $\sigma\in(1,4/3)$ and space $S=n\sigma$, we essentially improve the query time from $n2/S$ to $\sqrt{n2/S}$.

Citations (72)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.