Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimating Subagging by cross-validation (1011.5142v1)

Published 23 Nov 2010 in stat.ML

Abstract: In this article, we derive concentration inequalities for the cross-validation estimate of the generalization error for subagged estimators, both for classification and regressor. General loss functions and class of predictors with both finite and infinite VC-dimension are considered. We slightly generalize the formalism introduced by \cite{DUD03} to cover a large variety of cross-validation procedures including leave-one-out cross-validation, $k$-fold cross-validation, hold-out cross-validation (or split sample), and the leave-$\upsilon$-out cross-validation. \bigskip \noindent An interesting consequence is that the probability upper bound is bounded by the minimum of a Hoeffding-type bound and a Vapnik-type bounds, and thus is smaller than 1 even for small learning set. Finally, we give a simple rule on how to subbag the predictor. \bigskip

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.