Papers
Topics
Authors
Recent
2000 character limit reached

Complexity of Homogeneous Co-Boolean Constraint Satisfaction Problems (1011.4744v1)

Published 22 Nov 2010 in cs.CC

Abstract: Constraint Satisfaction Problems (CSP) constitute a convenient way to capture many combinatorial problems. The general CSP is known to be NP-complete, but its complexity depends on a template, usually a set of relations, upon which they are constructed. Following this template, there exist tractable and intractable instances of CSPs. It has been proved that for each CSP problem over a given set of relations there exists a corresponding CSP problem over graphs of unary functions belonging to the same complexity class. In this short note we show a dichotomy theorem for every finite domain D of CSP built upon graphs of homogeneous co-Boolean functions, i.e., unary functions sharing the Boolean range {0, 1}.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.