Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Regularization Strategies and Empirical Bayesian Learning for MKL (1011.3090v2)

Published 13 Nov 2010 in stat.ML and cs.LG

Abstract: Multiple kernel learning (MKL), structured sparsity, and multi-task learning have recently received considerable attention. In this paper, we show how different MKL algorithms can be understood as applications of either regularization on the kernel weights or block-norm-based regularization, which is more common in structured sparsity and multi-task learning. We show that these two regularization strategies can be systematically mapped to each other through a concave conjugate operation. When the kernel-weight-based regularizer is separable into components, we can naturally consider a generative probabilistic model behind MKL. Based on this model, we propose learning algorithms for the kernel weights through the maximization of marginal likelihood. We show through numerical experiments that $\ell_2$-norm MKL and Elastic-net MKL achieve comparable accuracy to uniform kernel combination. Although uniform kernel combination might be preferable from its simplicity, $\ell_2$-norm MKL and Elastic-net MKL can learn the usefulness of the information sources represented as kernels. In particular, Elastic-net MKL achieves sparsity in the kernel weights.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.