Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stability of Density-Based Clustering (1011.2771v1)

Published 11 Nov 2010 in stat.ML, math.ST, and stat.TH

Abstract: High density clusters can be characterized by the connected components of a level set $L(\lambda) = {x:\ p(x)>\lambda}$ of the underlying probability density function $p$ generating the data, at some appropriate level $\lambda\geq 0$. The complete hierarchical clustering can be characterized by a cluster tree ${\cal T}= \bigcup_{\lambda} L(\lambda)$. In this paper, we study the behavior of a density level set estimate $\widehat L(\lambda)$ and cluster tree estimate $\widehat{\cal{T}}$ based on a kernel density estimator with kernel bandwidth $h$. We define two notions of instability to measure the variability of $\widehat L(\lambda)$ and $\widehat{\cal{T}}$ as a function of $h$, and investigate the theoretical properties of these instability measures.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.