Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Rademacher Chaos, Random Eulerian Graphs and The Sparse Johnson-Lindenstrauss Transform (1011.2590v1)

Published 11 Nov 2010 in cs.DS

Abstract: The celebrated dimension reduction lemma of Johnson and Lindenstrauss has numerous computational and other applications. Due to its application in practice, speeding up the computation of a Johnson-Lindenstrauss style dimension reduction is an important question. Recently, Dasgupta, Kumar, and Sarlos (STOC 2010) constructed such a transform that uses a sparse matrix. This is motivated by the desire to speed up the computation when applied to sparse input vectors, a scenario that comes up in applications. The sparsity of their construction was further improved by Kane and Nelson (ArXiv 2010). We improve the previous bound on the number of non-zero entries per column of Kane and Nelson from $O(1/\epsilon \log(1/\delta)\log(k/\delta))$ (where the target dimension is $k$, the distortion is $1\pm \epsilon$, and the failure probability is $\delta$) to $$ O\left({1\over\epsilon} \left({\log(1/\delta)\log\log\log(1/\delta) \over \log\log(1/\delta)}\right)2\right). $$ We also improve the amount of randomness needed to generate the matrix. Our results are obtained by connecting the moments of an order 2 Rademacher chaos to the combinatorial properties of random Eulerian multigraphs. Estimating the chance that a random multigraph is composed of a given number of node-disjoint Eulerian components leads to a new tail bound on the chaos. Our estimates may be of independent interest, and as this part of the argument is decoupled from the analysis of the coefficients of the chaos, we believe that our methods can be useful in the analysis of other chaoses.

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.