Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Streaming Algorithms from Precision Sampling (1011.1263v2)

Published 4 Nov 2010 in cs.DS and cs.CG

Abstract: A technique introduced by Indyk and Woodruff [STOC 2005] has inspired several recent advances in data-stream algorithms. We show that a number of these results follow easily from the application of a single probabilistic method called Precision Sampling. Using this method, we obtain simple data-stream algorithms that maintain a randomized sketch of an input vector $x=(x_1,...x_n)$, which is useful for the following applications. 1) Estimating the $F_k$-moment of $x$, for $k>2$. 2) Estimating the $\ell_p$-norm of $x$, for $p\in[1,2]$, with small update time. 3) Estimating cascaded norms $\ell_p(\ell_q)$ for all $p,q>0$. 4) $\ell_1$ sampling, where the goal is to produce an element $i$ with probability (approximately) $|x_i|/|x|1$. It extends to similarly defined $\ell_p$-sampling, for $p\in [1,2]$. For all these applications the algorithm is essentially the same: scale the vector x entry-wise by a well-chosen random vector, and run a heavy-hitter estimation algorithm on the resulting vector. Our sketch is a linear function of x, thereby allowing general updates to the vector x. Precision Sampling itself addresses the problem of estimating a sum $\sum{i=1}n a_i$ from weak estimates of each real $a_i\in[0,1]$. More precisely, the estimator first chooses a desired precision $u_i\in(0,1]$ for each $i\in[n]$, and then it receives an estimate of every $a_i$ within additive $u_i$. Its goal is to provide a good approximation to $\sum a_i$ while keeping a tab on the "approximation cost" $\sum_i (1/u_i)$. Here we refine previous work [Andoni, Krauthgamer, and Onak, FOCS 2010] which shows that as long as $\sum a_i=\Omega(1)$, a good multiplicative approximation can be achieved using total precision of only $O(n\log n)$.

Citations (105)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.